Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

A new quaternary rare earth borate, $CsLi_2Gd_4(BO_3)_5$

Ming-Jun Xia^{a,b} and R. K. Li^a*

^aBeijing Center for Crystal Research and Development, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China, and ^bGraduate University of the Chinese Academy of Sciences, Beijing 100039, People's Republic of China Correspondence e-mail: rkli@cl.cryo.ac.cn

Received 8 June 2007; accepted 25 July 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (O–B) = 0.011 Å; R factor = 0.044; wR factor = 0.108; data-to-parameter ratio = 12.4.

Single crystals of caesium dilithium tetragadolinium pentaborate, $CsLi_2Gd_4(BO_3)_5$, were obtained by heating lithium and gadolinium in a caesium borate flux. The structure features chains of edge- and corner-sharing GdO_n polyhedra. These chains are interlocked to form $[Gd_8O_{16}(BO_3)_2]^{14-}$ layers, which are connected by borate groups in the third dimension. The Li and Cs atoms occupy O_5 pyramids and large cages in the framework, respectively.

Related literature

For related literature, see: Aka *et al.* (1997); Chaminade *et al.* (1999, 2001); Crumpton & Greaves (2004); Czirr *et al.* (1999); Darriet *et al.* (2005); Dorozhkin *et al.* (1981); Fouassier *et al.* (1981); Jubera *et al.* (2003); Jubera, Gravereau & Chaminade (2001); Jubera, Gravereau, Chaminade & Fouassier (2001); Mascetti *et al.* (1983); Muktha & Row (2006); Ren *et al.* (1999); Sablayrolles *et al.* (2005); Wu *et al.* (2001); van Eijk *et al.* (2001).

Experimental

Crystal data

 $\begin{aligned} &\text{CsLi}_2\text{Gd}_4(\text{BO}_3)_5 \\ &M_r = 1069.84 \\ &\text{Monoclinic, } P2/n \\ &a = 10.644 \ (2) \text{ \AA} \\ &b = 6.4661 \ (15) \text{ \AA} \\ &c = 20.093 \ (4) \text{ \AA} \\ &\beta = 105.250 \ (16)^\circ \end{aligned}$

Data collection

Bruker P4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.042, T_{\max} = 0.167$ 7381 measured reflections 3068 independent reflections $V = 1334.3 (5) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation $\mu = 22.40 \text{ mm}^{-1}$ T = 295 (2) K 0.16 \times 0.12 \times 0.08 mm

2829 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ 3 standard reflections every 97 reflections intensity decay: none Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.108$ S = 1.113068 reflections 248 parameters $\Delta \rho_{\text{max}} = 4.05 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -2.81 \text{ e } \text{\AA}^{-3}$

Data collection: *XSCANS* (Bruker, 1997); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *publCIF* (Version 1.0c; Westrip, 2007).

The authors thank Dr R. J. Wang of the Department of Chemistry, Tsinghua University, for collecting the singlecrystal X-ray diffraction data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2036).

References

- Aka, G., Kahn-Harari, A., Mougel, F., Vivien, D., Salin, F., Coquelin, P., Colin, P., Pelenc, D. & Damelet, J. P. (1997). J. Opt. Soc. Am. B, 14, L2238–2247.
- Bruker (1997). XSCANS (Version 2.2) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chaminade, J.-P., Gravereau, P., Jubera, V. & Fouassier, C. (1999). J. Solid State Chem. 146, 189–196.
- Chaminade, J. P., Viraphong, O., Guillen, F., Fouassier, C. & Czirr, B. (2001). *IEEE Trans. Nucl. Sci.* 48, 1158–1161.
- Crumpton, T. E. & Greaves, C. (2004). J. Mater. Chem. 14, 2433-2437.
- Czirr, J. B., MacGillivray, G. M., MacGillivray, R. R. & Seddon, P. J. (1999). Nucl. Instrum. Methods Phys. Res. A, 424, 15–19.
- Darriet, J., Launay, J. C. & Zúniga, F. J. (2005). J. Solid State Chem. 178, 1753– 1764.
- Dorozhkin, L. M., Kuratev, I. I., Leonyuk, N. I., Timchenko, T. I. & Shestakov, A. V. (1981). Sov. Tech. Phys. Lett., 7, 555–556.
- Eijk, C. W. E. van (2001). Nucl. Instrum. Methods Phys. Res. A, 460, 1-14.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fouassier, C., Saubat, B. & Hagenmuller, P. (1981). J. Lumin. 23, 405-412.
- Jubera, V., Chaminade, J. P., Garcia, A., Guillen, F. & Fouassier, C. (2003). J. Lumin. 101, 1–10.
- Jubera, V., Gravereau, P. & Chaminade, J. P. (2001). Solid State Sci. 3, 469-475.
- Jubera, V., Gravereau, P., Chaminade, J. P. & Fouassier, C. (2001). J. Solid State Chem. 156, 161–167.
- Mascetti, J., Fouassier, C. & Hagenmuller, P. (1983). J. Solid State Chem. 50, 204–212.
- Muktha, B. & Row, T. N. G. (2006). Inorg. Chem. 45, 4706-4711.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359
- Ren, M., Lin, J.-H., Dong, Y., Yang, L. Q., Su, M. Z. & You, L. P. (1999). Chem. Mater. 11, 1576–1580.
- Sablayrolles, J., Jubera, V., Chaminade, J. P., Manek-Hönninger, I., Murugan, S., Cardinal, T., Olazcuaga, R., Garcia, A. & Salin, F. (2005). *Opt. Mater.* 27, 1681–1685.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Westrip, S. P. (2007). publCIF. In preparation.
- Wu, Y. C., Liu, J. G., Fu, P. Z., Wang, J. X., Zhou, H. Y., Wang, G. F. & Chen, C. T. (2001). Chem. Mater. 13, 753–755.

Acta Cryst. (2007). E63, i173 [doi:10.1107/S1600536807036586]

A new quaternary rare earth borate, CsLi₂Gd₄(BO₃)₅

M.-J. Xia and R. K. Li

Comment

Rare earth borates are promising luminescent materials (Jubera *et al.*, 2003; Sablayrolles *et al.*, 2005) and their applications are found in Plasma Displays Panels (PDP) and efficient light conversion bulbs (Fouassier *et al.*, 1981). Besides that, rare earth borates are good nonlinear optical materials, *e.g.* YCa4O(BO₃)₃ (Aka *et al.*, 1997), CaLa₂B₁₀O₁₉ (Wu *et al.*, 2001), and self-frequency doubling laser crystals Nd³⁺:YAl₃(BO₃) (Dorozhkin *et al.*, 1981). Recently, Li₆Gd(BO₃)₃:Ce has received extensive attention as a new efficient thermal neutron detection material. (Czirr *et al.*, 1999; Chaminade *et al.*, 2001, van Eijk *et al.*, 2001)

In the Li₂O—Gd₂O₃—B₂O₃ system, there are four ternary compounds, LiGd₆O₅(BO₃)₃ (Chaminade *et al.*, 1999), Li₆Gd(BO₃)₃ (Mascetti *et al.*, 1983), Li₃Gd(BO₃)₂ and LiGd₂O₂BO₃ (Jubera, Gravereau & Chaminade, 2001). In an attempt to synthesize compounds in the system using caesium borate as the flux, we obtained a new quaternary compound $CsLi_2Gd_4(BO_3)_5$, which is, to our knowledge, the first rare-earth borate containing caesium.

The structure of $CsLi_2Gd_4(BO_3)_5$ is shown in figure 1. In the asymmetric unit, all six boron atoms are three-coordinated yielding planar BO₃ groups (B—O: 1.352 to 1.408 Å, average: 1.376 Å, which agrees with literature values). The site symmetry of B2 and B3 is 2.

The Gd atoms occupy five different crystallographic sites, Gd2, Gd4 and Gd5 being coordinated by seven O atoms and Gd1 and Gd3 coordinated to eight and nine oxygen atoms, respectively. Gd2, Gd3 lie on twofold axes. The GdO_n polyhedra (Gd—O: 2.241 to 2.634 Å) share edges yielding two types of Gd—O chains. The chain containing Gd1, Gd3 and Gd5 atoms is terminated by two BO₃ groups (Fig. 2). The three-element Gd₃O₁₇ chain (Fig. 3) joins other equivalent three-element chains to form an infinite zigzag chain. Both chains can be classified as fluorite-related ribbons, which are common in rare earth borate compounds (Ren *et al.*, 1999; Jubera, Gravereau, Chaminade & Fouassier, 2001). Similar Bi—O ribbons are reported in bismuth compounds (Crumpton & Greaves, 2004; Darriet *et al.*, 2005; Muktha & Row, 2006). The two chains in CsLi₂Gd₄(BO₃)₅ are interlocked by sharing the edges of Gd polyhedra to form a two dimensional [Gd₈O₁₆(BO₃)₂]^{14–} layer in the *ac* plane. The layers are inter-linked by out of plane BO₃ groups in the *b* direction into a 3 dimensional network.

Both Li atoms are five-coordinated (distorted square pyramids, Li—O: 1.885 to 2.145 Å). The Cs atom is coordinated by seven O atoms and resides in a big basket-like cage.

Experimental

Single crystals of CsLi₂Gd₄(BO₃)₅ were obtained in a Pt crucible by melting a mixture of analytically pure Cs₂CO₃ (1.3028 g, 4 mmol, XinJiang Research Institute of Non-ferrous Metals), Li₂CO₃ (0.2217, 3 mmol, Beijing Chemical Reagents Company), Gd₂O₃ (0.7250 g, 2 mmol, CIAC), H₃BO₃ (0.9829, 16 mmol, Beijing Chemical Reagents Company). The melt was

cooled slowly from 1023 to 873 K at a rate of 1 K h^{-1} and then at a rate of 20 K h^{-1} to the room temperature. Block-shaped colourless crystals were recovered and separated from the initial reaction product. The Rb analogue of the title compound can be synthesized by solid-state reaction, with the determined composition of CsLi₂Gd₄(BO₃)₅.

Refinement

Two space groups, Pn and P2/n, were proposed by the data preparation program. The noncentrosymmetric space group Pn was discarded for further consideration since detectable signal was not observed in a powder second harmonic generation test. Direct phase determination showed positions of 6 heavy atoms which were assigned to Gd. Subsequent difference Fourier syntheses revealed the positions of the oxygen atoms. Judging from its larger thermal parameters and much further coordination to the oxygen atoms one of the heavy atom was then assigned to Cs.

Figures

Fig. 1. The crystal structure of CsLi₂Gd₄(BO₃)₅ viewed along *a* axis.

Fig. 2. G d₅O₂₉(BO₃)₂ chain in the CsLi₂Gd₄(BO₃)₅: [Symmetry code:(i) x + 1/2, -y + 1, z + 1/2;(ii) -x + 2, -y + 1, -z + 2; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 3/2, y, -z + 3/2; (v) x + 1/2, -y + 1, z - 1/2; (vi) x - 1/2, -y + 1, z - 1/2; (vii) -x + 1, -y + 1, -z + 1; (viii) -x + 1/2, y, -z + 3/2.]

Fig. 3. G d₃O₁₇ chain in the CsLi₂Gd₄(BO₃)₅: [Symmetry code: same as figure 2].

caesium dilithium tetragadolinium pentaborate

Crystal data	
CsLi2Gd4(BO3)5	$F_{000} = 1848$
$M_r = 1069.84$	$D_{\rm x} = 5.326 {\rm ~Mg~m}^{-3}$
Monoclinic, <i>P2/n</i>	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yac	Cell parameters from 23 reflections
a = 10.644 (2) Å	$\theta = 6.5 - 11.7^{\circ}$
b = 6.4661 (15) Å	$\mu = 22.40 \text{ mm}^{-1}$
c = 20.093 (4) Å	T = 295 (2) K
$\beta = 105.250 \ (16)^{\circ}$	Block, colourless
$V = 1334.3 (5) \text{ Å}^3$	$0.16 \times 0.12 \times 0.08 \text{ mm}$

Z = 4

Data collection

Bruker P4 diffractometer	$R_{\rm int} = 0.060$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.0^{\circ}$
T = 295(2) K	$h = -13 \rightarrow 13$
ω scans	$k = -8 \rightarrow 8$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = -26 \rightarrow 25$
$T_{\min} = 0.042, \ T_{\max} = 0.167$	3 standard reflections
7381 measured reflections	every 97 reflections
3068 independent reflections	intensity decay: none
2829 reflections with $I > 2\sigma(I)$	

Refinement

Refinement of	on	F^2
---------------	----	-------

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.108$ S = 1.11

3068 reflections

248 parameters

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

												۶.
Engotional	atomio	a a andin at an	and	instruction	~ **	againgland	inotuomio	diamlaca	100 010 +	man at and	1 14	21
ггасионаі	alomic	coorainales	ana	ISOLFODIC	or	eauivaieni	ISOIPODIC	aisniace	meni	parameters	1A	1
								p		r	(/

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Gd1	0.45528 (3)	0.34144 (6)	0.649931 (16)	0.01704 (15)
Gd2	0.2500	0.59641 (9)	0.7500	0.02208 (16)

Secondary atom site location: difference Fourier map $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.069P)^{2} + 1.5286P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 4.05$ e Å⁻³ $\Delta\rho_{min} = -2.81$ e Å⁻³ Extinction correction: SHELXL97 (Sheldrick, 1997), Fc^{*}=kFc[1+0.001xFc^{2}\lambda^{3}/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0133 (4)

Gd3	0.7500	0.59044 (8)	0.7500	0.01776 (16)
Gd4	0.35686 (3)	0.64428 (6)	0.946524 (18)	0.01724 (14)
Gd5	0.84343 (3)	0.64848 (6)	0.953592 (16)	0.01731 (15)
Cs1	0.55501 (4)	0.09547 (9)	0.85836 (2)	0.02535 (16)
B1	0.4515 (6)	0.7837 (16)	0.6497 (4)	0.0190 (16)
B2	0.2500	0.1655 (18)	0.7500	0.020 (2)
B3	0.7500	0.1618 (19)	0.7500	0.023 (3)
B4	0.3429 (7)	0.1954 (19)	0.9500 (4)	0.0238 (19)
B5	0.8570 (8)	0.2030 (17)	0.9562 (4)	0.0216 (17)
B6	0.5418 (7)	0.5930 (13)	0.8231 (4)	0.0200 (15)
Li1	0.6372 (11)	0.978 (2)	0.6532 (7)	0.027 (3)
Li2	0.2786 (11)	0.987 (2)	0.6582 (6)	0.022 (2)
01	0.4590 (4)	0.9903 (9)	0.6603 (3)	0.0231 (11)
O2	0.3386 (5)	0.6737 (8)	0.6485 (3)	0.0198 (11)
O3	0.5582 (5)	0.6740 (8)	0.6405 (3)	0.0189 (10)
O4	0.2500	-0.0436 (13)	0.7500	0.0252 (17)
05	0.2777 (4)	0.2764 (8)	0.6974 (2)	0.0207 (10)
O6	0.7500	-0.0510 (13)	0.7500	0.0226 (17)
07	0.8179 (4)	0.2672 (9)	0.8072 (2)	0.0206 (10)
08	0.3404 (4)	-0.0048 (9)	0.9297 (3)	0.0190 (10)
09	0.4550 (4)	0.3091 (9)	0.9728 (3)	0.0237 (11)
O10	0.2302 (4)	0.3107 (8)	0.9469 (3)	0.0202 (10)
O11	0.8424 (5)	-0.0004 (10)	0.9383 (3)	0.0203 (10)
012	0.9664 (5)	0.3213 (8)	0.9531 (3)	0.0191 (10)
O13	0.7622 (4)	0.3197 (8)	0.9754 (3)	0.0220 (10)
O14	0.5248 (5)	0.4966 (10)	0.7606 (3)	0.0265 (11)
015	0.6689 (4)	0.6496 (9)	0.8568 (3)	0.0219 (11)
O16	0.4352 (5)	0.6364 (9)	0.8473 (3)	0.0233 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Gd1	0.0196 (2)	0.0201 (2)	0.0127 (2)	0.00018 (11)	0.00648 (15)	0.00003 (12)
Gd2	0.0354 (3)	0.0193 (3)	0.0130 (3)	0.000	0.0089 (2)	0.000
Gd3	0.0211 (2)	0.0196 (3)	0.0133 (3)	0.000	0.00573 (18)	0.000
Gd4	0.0186 (2)	0.0209 (2)	0.0129 (2)	0.00014 (12)	0.00551 (14)	0.00020 (13)
Gd5	0.0198 (2)	0.0214 (3)	0.0120 (2)	-0.00005 (12)	0.00639 (15)	0.00026 (13)
Cs1	0.0253 (3)	0.0283 (3)	0.0243 (3)	-0.00007 (17)	0.00982 (19)	-0.00019 (19)
B1	0.021 (3)	0.024 (4)	0.013 (4)	0.003 (3)	0.004 (3)	0.006 (3)
B2	0.019 (5)	0.016 (6)	0.027 (6)	0.000	0.009 (4)	0.000
B3	0.022 (5)	0.021 (6)	0.027 (6)	0.000	0.009 (4)	0.000
B4	0.023 (3)	0.037 (5)	0.012 (4)	0.001 (3)	0.004 (3)	0.007 (3)
B5	0.026 (3)	0.030 (5)	0.009 (3)	0.003 (3)	0.005 (3)	-0.001 (3)
B6	0.020 (3)	0.025 (4)	0.016 (4)	-0.004 (3)	0.007 (3)	-0.003 (3)
Li1	0.026 (5)	0.033 (7)	0.023 (6)	-0.004 (5)	0.009 (5)	-0.010 (6)
Li2	0.028 (5)	0.024 (6)	0.015 (5)	-0.004 (5)	0.009 (4)	0.004 (5)
01	0.023 (2)	0.021 (3)	0.028 (3)	0.001 (2)	0.013 (2)	0.001 (2)
O2	0.020 (2)	0.023 (3)	0.018 (2)	-0.0011 (19)	0.0078 (19)	0.000 (2)

03	0.023 (2)	0.020 (2)	0.016 (2)	0.0020 (19)	0.0085 (18)	0.000 (2)
O4	0.040 (4)	0.021 (4)	0.019 (4)	0.000	0.015 (3)	0.000
O5	0.028 (2)	0.021 (2)	0.016 (2)	0.000(2)	0.0109 (18)	0.000 (2)
O6	0.025 (3)	0.028 (4)	0.015 (3)	0.000	0.005 (3)	0.000
07	0.0218 (19)	0.027 (3)	0.013 (2)	-0.002 (2)	0.0046 (17)	0.001 (2)
08	0.023 (2)	0.015 (2)	0.018 (2)	0.0030 (19)	0.0021 (18)	-0.001 (2)
09	0.022 (2)	0.026 (3)	0.023 (3)	-0.002 (2)	0.0060 (19)	-0.001 (2)
O10	0.022 (2)	0.024 (2)	0.017 (2)	0.003 (2)	0.0088 (18)	0.001 (2)
011	0.028 (2)	0.016 (2)	0.019 (2)	0.000(2)	0.0092 (19)	0.001 (2)
012	0.020 (2)	0.023 (3)	0.015 (2)	-0.0036 (19)	0.0058 (18)	0.000 (2)
013	0.023 (2)	0.021 (2)	0.025 (3)	-0.001 (2)	0.013 (2)	0.000 (2)
O14	0.034 (2)	0.032 (3)	0.016 (2)	0.000 (3)	0.011 (2)	-0.002 (2)
015	0.018 (2)	0.029 (3)	0.019 (3)	-0.0022 (19)	0.0048 (19)	-0.004 (2)
016	0.021 (2)	0.029 (3)	0.023 (3)	0.000(2)	0.012 (2)	-0.002(2)

Geometric parameters (Å, °)

Gd1—O1 ⁱ	2.279 (6)	B1—Li1	2.329 (15)
Gd1—O5	2.368 (4)	B2—O4	1.352 (14)
Gd1014	2.373 (5)	B2—O5 ⁱⁱ	1.372 (8)
Gd1—O10 ⁱⁱ	2.389 (5)	B2—O5	1.372 (8)
Gd1—O7 ⁱⁱⁱ	2.389 (4)	B2—Li2 ^{viii}	2.265 (14)
Gd1—O12 ⁱⁱⁱ	2.431 (5)	B2—Li2 ⁱ	2.265 (14)
Gd1—O3	2.443 (5)	B2—Cs1 ⁱⁱ	3.4305 (18)
Gd1—O2	2.478 (5)	B3—O7 ⁱⁱⁱ	1.367 (8)
Gd1—B1	2.860 (11)	B3—O7	1.368 (8)
Gd1—Li2 ⁱ	2.999 (12)	B3—O6	1.375 (15)
Gd1—Li1 ⁱ	3.033 (14)	B3—Li1 ^{ix}	2.323 (14)
Gd1—Gd3	3.6274 (8)	B3—Li1 ⁱ	2.323 (14)
Gd2—O4 ^{iv}	2.328 (8)	B3—Cs1 ⁱⁱⁱ	3.4075 (17)
Gd2—O5	2.377 (5)	B4—O8	1.355 (13)
Gd2—O5 ⁱⁱ	2.377 (5)	B4—O9	1.374 (10)
Gd2—O16 ⁱⁱ	2.398 (5)	B4—O10	1.400 (10)
Gd2—O16	2.398 (5)	B4—Li2 ^{viii}	2.597 (15)
Gd2—O2	2.511 (5)	B5—O11	1.362 (12)
Gd2—O2 ⁱⁱ	2.511 (5)	B5—O13	1.393 (10)
Gd2—B2	2.786 (12)	B5—O12	1.408 (10)
Gd2—B6 ⁱⁱ	3.067 (7)	B5—Li1 ^{ix}	2.650 (17)
Gd2—B6	3.067 (7)	B6—O14	1.372 (9)
Gd3—O6 ^{iv}	2.319 (8)	B6—O16	1.376 (9)
Gd3—O7	2.403 (5)	B6—O15	1.393 (8)
Gd3—O7 ⁱⁱⁱ	2.403 (5)	B6—Cs1 ^{iv}	3.320 (8)
Gd3—O14	2.535 (5)	Li1—O11 ^x	1.913 (14)
Gd3—O14 ⁱⁱⁱ	2.535 (5)	Li1—O1	1.941 (13)
Gd3—O15 ⁱⁱⁱ	2.544 (5)	Li1—O6 ^{iv}	2.007 (13)

Gd3—O15	2.544 (5)	Li1—O7 ^x	2.036 (15)
Gd3—O3 ⁱⁱⁱ	2.634 (5)	Li1—O3	2.130 (15)
Gd3—O3	2.634 (5)	Li1—B3 ^{iv}	2.323 (14)
Gd3—B3	2.772 (13)	Li1—B5 ^x	2.650 (17)
Gd3—B6	2.963 (7)	Li1—Gd1 ^{iv}	3.033 (14)
Gd3—B6 ⁱⁱⁱ	2.963 (7)	Li1—Gd5 ⁱⁱⁱ	3.072 (13)
Gd4—O9 ^v	2.241 (5)	Li1—Cs1 ^x	3.429 (12)
Gd4—O13 ^v	2.273 (5)	Li2—O8 ^{xi}	1.885 (13)
Gd4—O8 ^{iv}	2.294 (6)	Li2—O1	1.909 (12)
Gd4—O16	2.356 (6)	Li2—O4 ^{iv}	1.957 (12)
Gd4—O9	2.404 (5)	Li2—O5 ^{iv}	2.034 (14)
Gd4—O2 ⁱⁱ	2.433 (5)	Li2—O2	2.145 (14)
Gd4—O10	2.545 (5)	Li2—B2 ^{iv}	2.265 (14)
Gd4—B4	2.908 (12)	Li2—B4 ^{xi}	2.597 (15)
Gd4—Li2 ⁱⁱ	3.132 (13)	Li2—Gd1 ^{iv}	2.999 (12)
Gd4—Gd4 ^v	3.7337 (10)	Li2—Gd4 ⁱⁱ	3.132 (13)
Gd4—Gd5 ^v	3.7958 (8)	Li2—Cs1 ^{xi}	3.549 (12)
Gd5—O11 ^{iv}	2.291 (6)	O1—Gd1 ^{iv}	2.279 (6)
Gd5—O15	2.309 (5)	O2—Gd4 ⁱⁱ	2.433 (5)
Gd5—O12 ^{vi}	2.378 (5)	O3—Gd5 ⁱⁱⁱ	2.396 (5)
Gd5—O13	2.379 (5)	O4—Li2 ^{viii}	1.957 (12)
Gd5—O3 ⁱⁱⁱ	2.396 (5)	O4—Li2 ⁱ	1.957 (12)
Gd5—O12	2.489 (5)	O4—Gd2 ⁱ	2.328 (8)
Gd5—B5	2.884 (11)	O4—Cs1 ⁱⁱ	3.517 (2)
Gd5—Li1 ⁱⁱⁱ	3.072 (13)	O5—Li2 ⁱ	2.034 (14)
Gd5—Gd4 ^v	3.7957 (7)	O5—Cs1 ⁱⁱ	3.616 (5)
Gd5—Gd1 ^{vii}	3.8099 (9)	O6—Li1 ^{ix}	2.007 (13)
Gd5—Gd5 ^{vi}	3.8737 (10)	O6—Li1 ⁱ	2.007 (13)
Cs1—O8	3.069 (5)	O6—Gd3 ⁱ	2.319 (8)
Cs1—O9	3.101 (5)	O6—Cs1 ⁱⁱⁱ	3.510 (2)
Cs1—O11	3.121 (5)	O7—Lil ^{ix}	2.036 (15)
Cs1—O13	3.126 (5)	O7—Gd1 ⁱⁱⁱ	2.389 (4)
Cs1—O15 ⁱ	3.131 (5)	O8—Li2 ^{viii}	1.885 (13)
Cs1—O16 ⁱ	3.215 (6)	O8—Gd4 ⁱ	2.294 (6)
Cs1—O14	3.219 (6)	O9—Gd4 ^v	2.241 (5)
Cs1—B6	3.289 (9)	O10—Gd5 ^v	2.346 (5)
Cs1—B6 ⁱ	3.320 (9)	O10—Gd1 ⁱⁱ	2.389 (5)
Cs1—B4	3.331 (9)	O11—Li1 ^{ix}	1.913 (14)
Cs1—B5	3.370 (8)	O11—Gd5 ⁱ	2.291 (6)
Cs1—B3	3.4074 (19)	O12—Gd5 ^{vi}	2.378 (5)
B1—01	1.352 (12)	O12—Gd1 ⁱⁱⁱ	2.431 (5)

B1—O2	1.391 (9)	O13—Gd4 ^v	2.273 (5)
B1—O3	1.392 (9)	O15—Cs1 ^{iv}	3.131 (5)
B1—Li2	2.302 (15)	O16—Cs1 ^{iv}	3.215 (6)
O1 ⁱ —Gd1—O5	77.44 (17)	B5—Cs1—B3	72.48 (14)
O1 ⁱ Gd1O14	110.0 (2)	O1—B1—O2	121.5 (6)
O5—Gd1—O14	77.49 (17)	O1—B1—O3	120.6 (7)
O1 ⁱ —Gd1—O10 ⁱⁱ	88.99 (18)	O2—B1—O3	117.9 (8)
O5—Gd1—O10 ⁱⁱ	74.75 (16)	O1—B1—Li2	56.0 (5)
O14—Gd1—O10 ⁱⁱ	141.81 (18)	O2—B1—Li2	65.7 (5)
O1 ⁱ —Gd1—O7 ⁱⁱⁱ	77.01 (18)	O3—B1—Li2	174.9 (7)
O5—Gd1—O7 ⁱⁱⁱ	131.07 (17)	O1—B1—Li1	56.4 (5)
O14—Gd1—O7 ⁱⁱⁱ	73.17 (17)	O2—B1—Li1	177.9 (7)
O10 ⁱⁱ —Gd1—O7 ⁱⁱⁱ	144.84 (17)	O3—B1—Li1	64.2 (5)
O1 ⁱ —Gd1—O12 ⁱⁱⁱ	91.33 (18)	Li2—B1—Li1	112.2 (7)
O5—Gd1—O12 ⁱⁱⁱ	145.34 (17)	O1—B1—Gd1	171.0 (5)
O14—Gd1—O12 ⁱⁱⁱ	136.74 (18)	O2—B1—Gd1	60.0 (4)
O10 ⁱⁱ —Gd1—O12 ⁱⁱⁱ	72.34 (17)	O3—B1—Gd1	58.6 (4)
O7 ⁱⁱⁱ —Gd1—O12 ⁱⁱⁱ	75.88 (16)	Li2—B1—Gd1	125.5 (4)
O1 ⁱ —Gd1—O3	152.44 (16)	Li1—B1—Gd1	121.9 (5)
O5—Gd1—O3	127.53 (17)	O4—B2—O5 ⁱⁱ	121.5 (5)
O14—Gd1—O3	70.40 (19)	O4—B2—O5	121.5 (5)
O10 ⁱⁱ —Gd1—O3	107.56 (17)	O5 ⁱⁱ —B2—O5	117.0 (9)
O7 ⁱⁱⁱ —Gd1—O3	76.93 (18)	O4—B2—Li2 ^{viii}	59.3 (4)
O12 ⁱⁱⁱ —Gd1—O3	73.74 (17)	O5 ⁱⁱ —B2—Li2 ^{viii}	62.4 (4)
O1 ⁱ —Gd1—O2	149.44 (16)	O5—B2—Li2 ^{viii}	175.3 (4)
O5—Gd1—O2	73.01 (17)	O4—B2—Li2 ⁱ	59.3 (4)
O14—Gd1—O2	71.09 (19)	O5 ⁱⁱ —B2—Li2 ⁱ	175.3 (4)
O10 ⁱⁱ —Gd1—O2	76.03 (18)	O5—B2—Li2 ⁱ	62.4 (4)
O7 ⁱⁱⁱ —Gd1—O2	129.38 (17)	Li2 ^{viii} —B2—Li2 ⁱ	118.6 (8)
O12 ⁱⁱⁱ —Gd1—O2	108.66 (17)	O4—B2—Gd2	180.000 (3)
O3—Gd1—O2	57.97 (17)	O5 ⁱⁱ —B2—Gd2	58.5 (5)
O1 ⁱ —Gd1—B1	174.87 (19)	O5—B2—Gd2	58.5 (5)
O5—Gd1—B1	99.54 (19)	Li2 ^{viii} —B2—Gd2	120.7 (4)
O14—Gd1—B1	65.1 (2)	Li2 ⁱ —B2—Gd2	120.7 (4)
O10 ⁱⁱ —Gd1—B1	94.24 (19)	O4—B2—Cs1	82.41 (19)
O7 ⁱⁱⁱ —Gd1—B1	102.36 (19)	O5 ⁱⁱ —B2—Cs1	86.51 (19)
O12 ⁱⁱⁱ —Gd1—B1	93.45 (19)	O5—B2—Cs1	101.5 (2)
O3—Gd1—B1	29.10 (17)	Li2 ^{viii} —B2—Cs1	73.9 (3)
O2—Gd1—B1	29.11 (17)	Li2 ⁱ —B2—Cs1	98.2 (3)
O1 ⁱ —Gd1—Li2 ⁱ	39.5 (3)	Gd2—B2—Cs1	97.59 (19)
O5—Gd1—Li2 ⁱ	42.5 (3)	O4—B2—Cs1 ⁱⁱ	82.41 (19)

O14—Gd1—Li2 ⁱ	108.5 (3)	O5 ⁱⁱ —B2—Cs1 ⁱⁱ	101.5 (2)
O10 ⁱⁱ —Gd1—Li2 ⁱ	65.5 (3)	O5—B2—Cs1 ⁱⁱ	86.51 (19)
O7 ⁱⁱⁱ —Gd1—Li2 ⁱ	114.5 (3)	Li2 ^{viii} —B2—Cs1 ⁱⁱ	98.2 (3)
O12 ⁱⁱⁱ —Gd1—Li2 ⁱ	111.5 (3)	Li2 ⁱ —B2—Cs1 ⁱⁱ	73.9 (3)
O3—Gd1—Li2 ⁱ	168.0 (3)	Gd2—B2—Cs1 ⁱⁱ	97.59 (19)
O2—Gd1—Li2 ⁱ	110.1 (3)	Cs1—B2—Cs1 ⁱⁱ	164.8 (4)
B1—Gd1—Li2 ⁱ	139.1 (3)	O7 ⁱⁱⁱ —B3—O7	120.2 (10)
O1 ⁱ —Gd1—Li1 ⁱ	39.8 (3)	O7 ⁱⁱⁱ —B3—O6	119.9 (5)
O5—Gd1—Li1 ⁱ	115.2 (3)	O7—B3—O6	119.9 (5)
O14—Gd1—Li1 ⁱ	105.5 (3)	O7 ⁱⁱⁱ —B3—Li1 ^{ix}	179.0 (7)
O10 ⁱⁱ —Gd1—Li1 ⁱ	109.9 (3)	O7—B3—Li1 ^{ix}	60.6 (5)
O7 ⁱⁱⁱ —Gd1—Li1 ⁱ	42.1 (3)	O6—B3—Li1 ^{ix}	59.3 (5)
O12 ⁱⁱⁱ —Gd1—Li1 ⁱ	67.5 (3)	O7 ⁱⁱⁱ —B3—Li1 ⁱ	60.6 (5)
O3—Gd1—Li1 ⁱ	112.7 (3)	O7—B3—Li1 ⁱ	179.1 (7)
O2—Gd1—Li1 ⁱ	170.6 (3)	O6—B3—Li1 ⁱ	59.3 (5)
B1—Gd1—Li1 ⁱ	141.5 (3)	Li1 ^{ix} —B3—Li1 ⁱ	118.7 (9)
Li2 ⁱ —Gd1—Li1 ⁱ	79.2 (4)	O7 ⁱⁱⁱ —B3—Gd3	60.1 (5)
O1 ⁱ —Gd1—Gd3	113.56 (12)	O7—B3—Gd3	60.1 (5)
O5—Gd1—Gd3	121.42 (12)	O6—B3—Gd3	180.000 (3)
O14—Gd1—Gd3	44.10 (12)	Li1 ^{ix} —B3—Gd3	120.7 (5)
O10 ⁱⁱ —Gd1—Gd3	153.86 (13)	Li1 ⁱ —B3—Gd3	120.7 (5)
O7 ⁱⁱⁱ —Gd1—Gd3	40.95 (13)	O7 ⁱⁱⁱ —B3—Cs1	108.9 (2)
O12 ⁱⁱⁱ —Gd1—Gd3	93.18 (12)	O7—B3—Cs1	78.59 (19)
O3—Gd1—Gd3	46.54 (11)	O6—B3—Cs1	82.8 (2)
O2—Gd1—Gd3	88.82 (12)	Li1 ^{ix} —B3—Cs1	70.6 (3)
B1—Gd1—Gd3	64.33 (13)	Li1 ⁱ —B3—Cs1	101.7 (4)
Li2 ⁱ —Gd1—Gd3	140.6 (2)	Gd3—B3—Cs1	97.2 (2)
Li1 ⁱ —Gd1—Gd3	82.9 (2)	O7 ⁱⁱⁱ —B3—Cs1 ⁱⁱⁱ	78.59 (18)
O4 ^{iv} —Gd2—O5	150.52 (11)	O7—B3—Cs1 ⁱⁱⁱ	108.9 (2)
O4 ^{iv} —Gd2—O5 ⁱⁱ	150.52 (11)	O6—B3—Cs1 ⁱⁱⁱ	82.8 (2)
O5—Gd2—O5 ⁱⁱ	59.0 (2)	Li1 ^{ix} —B3—Cs1 ⁱⁱⁱ	101.7 (4)
O4 ^{iv} —Gd2—O16 ⁱⁱ	83.80 (14)	Li1 ⁱ —B3—Cs1 ⁱⁱⁱ	70.6 (3)
O5—Gd2—O16 ⁱⁱ	84.42 (18)	Gd3—B3—Cs1 ⁱⁱⁱ	97.2 (2)
O5 ⁱⁱ —Gd2—O16 ⁱⁱ	106.56 (18)	Cs1—B3—Cs1 ⁱⁱⁱ	165.5 (4)
O4 ^{iv} —Gd2—O16	83.80 (14)	O8—B4—O9	123.9 (7)
O5—Gd2—O16	106.56 (17)	O8—B4—O10	123.1 (7)
O5 ⁱⁱ —Gd2—O16	84.42 (18)	O9—B4—O10	112.9 (9)
O16 ⁱⁱ —Gd2—O16	167.6 (3)	O9—B4—Li2 ^{viii}	139.0 (6)
O4 ^{iv} —Gd2—O2	78.52 (12)	O10—B4—Li2 ^{viii}	90.4 (5)
O5—Gd2—O2	72.26 (16)	O8—B4—Gd4	160.6 (5)
O5 ⁱⁱ —Gd2—O2	130.64 (17)	O9—B4—Gd4	55.1 (5)

O16 ⁱⁱ —Gd2—O2	73.76 (17)	O10—B4—Gd4	61.1 (5)
O16—Gd2—O2	103.69 (17)	Li2 ^{viii} —B4—Gd4	121.1 (4)
O4 ^{iv} —Gd2—O2 ⁱⁱ	78.52 (12)	O8—B4—Cs1	67.1 (4)
O5—Gd2—O2 ⁱⁱ	130.64 (17)	O9—B4—Cs1	68.4 (4)
O5 ⁱⁱ —Gd2—O2 ⁱⁱ	72.26 (16)	O10—B4—Cs1	140.9 (5)
O16 ⁱⁱ —Gd2—O2 ⁱⁱ	103.69 (17)	Li2 ^{viii} —B4—Cs1	72.4 (3)
O16—Gd2—O2 ⁱⁱ	73.76 (17)	Gd4—B4—Cs1	97.7 (3)
O2—Gd2—O2 ⁱⁱ	157.0 (2)	O11—B5—O13	123.8 (7)
O4 ^{iv} —Gd2—B2	180.000 (4)	O11—B5—O12	123.4 (7)
O5—Gd2—B2	29.48 (11)	O13—B5—O12	112.7 (8)
O5 ⁱⁱ —Gd2—B2	29.48 (11)	O13—B5—Li1 ^{ix}	134.7 (6)
O16 ⁱⁱ —Gd2—B2	96.20 (14)	O12—B5—Li1 ^{ix}	93.5 (5)
O16—Gd2—B2	96.20 (14)	O11—B5—Gd5	163.4 (5)
O2—Gd2—B2	101.48 (12)	O13—B5—Gd5	55.1 (4)
O2 ⁱⁱ —Gd2—B2	101.48 (12)	O12—B5—Gd5	59.6 (4)
O4 ^{iv} —Gd2—O14 ⁱⁱ	102.64 (13)	Li1 ^{ix} —B5—Gd5	123.0 (4)
O5—Gd2—O14 ⁱⁱ	90.81 (16)	O11—B5—Cs1	67.8 (4)
O5 ⁱⁱ —Gd2—O14 ⁱⁱ	66.72 (16)	O13—B5—Cs1	67.9 (4)
O16 ⁱⁱ —Gd2—O14 ⁱⁱ	51.50 (16)	O12—B5—Cs1	139.4 (5)
O16—Gd2—O14 ⁱⁱ	132.05 (16)	Li1 ^{ix} —B5—Cs1	68.3 (3)
O2—Gd2—O14 ⁱⁱ	124.22 (15)	Gd5—B5—Cs1	99.2 (2)
$O2^{ii}$ —Gd2—O14 ⁱⁱ	61.62 (15)	O14—B6—O16	119.6 (6)
B2—Gd2—O14 ⁱⁱ	77.36 (13)	O14—B6—O15	116.2 (6)
O4 ^{iv} —Gd2—O14	102.64 (13)	O16—B6—O15	124.1 (7)
O5—Gd2—O14	66.72 (16)	O14—B6—Gd3	58.6 (3)
O5 ⁱⁱ —Gd2—O14	90.81 (16)	O16—B6—Gd3	165.9 (6)
O16 ⁱⁱ —Gd2—O14	132.05 (16)	O15—B6—Gd3	59.0 (3)
O16—Gd2—O14	51.50 (16)	O14—B6—Gd2	72.0 (4)
O2—Gd2—O14	61.62 (15)	O16—B6—Gd2	48.9 (3)
O2 ⁱⁱ —Gd2—O14	124.22 (15)	O15—B6—Gd2	164.3 (6)
B2—Gd2—O14	77.36 (13)	Gd3—B6—Gd2	123.9 (3)
O14 ⁱⁱ —Gd2—O14	154.7 (3)	O14—B6—Cs1	75.0 (4)
O4 ^{iv} —Gd2—B6 ⁱⁱ	90.41 (16)	O16—B6—Cs1	96.7 (5)
O5—Gd2—B6 ⁱⁱ	90.52 (19)	O15—B6—Cs1	99.9 (5)
O5 ⁱⁱ —Gd2—B6 ⁱⁱ	88.76 (19)	Gd3—B6—Cs1	96.1 (2)
$O16^{ii}$ —Gd2—B6 ⁱⁱ	25.60 (19)	Gd2—B6—Cs1	95.2 (2)
O16—Gd2—B6 ⁱⁱ	154.60 (19)	O14—B6—Cs1 ^{iv}	128.9 (5)
O2—Gd2—B6 ⁱⁱ	99.31 (18)	O16—B6—Cs1 ^{iv}	73.6 (4)
O2 ⁱⁱ —Gd2—B6 ⁱⁱ	80.86 (18)	O15—B6—Cs1 ^{iv}	70.0 (4)
B2—Gd2—B6 ⁱⁱ	89.59 (16)	Gd3—B6—Cs1 ^{iv}	96.7 (2)
O14 ⁱⁱ —Gd2—B6 ⁱⁱ	26.27 (17)	Gd2—B6—Cs1 ^{iv}	94.4 (2)
O14—Gd2—B6 ⁱⁱ	153.33 (18)	Cs1—B6—Cs1 ^{iv}	156.1 (3)

O4 ^{iv} —Gd2—B6	90.41 (16)	011 ^x —Li1—O1	115.3 (7)
O5—Gd2—B6	88.76 (19)	O11 ^x —Li1—O6 ^{iv}	138.4 (7)
O5 ⁱⁱ —Gd2—B6	90.52 (19)	O1—Li1—O6 ^{iv}	106.2 (6)
O16 ⁱⁱ —Gd2—B6	154.60 (19)	$O11^{x}$ —Li1— $O7^{x}$	103.6 (7)
O16—Gd2—B6	25.60 (19)	$O1$ —Li1— $O7^x$	93.9 (6)
O2—Gd2—B6	80.86 (18)	O6 ^{iv} —Li1—O7 ^x	71.9 (5)
O2 ⁱⁱ —Gd2—B6	99.31 (18)	011 ^x —Li1—O3	95.3 (6)
B2—Gd2—B6	89.59 (16)	01—Li1—O3	71.5 (5)
O14 ⁱⁱ —Gd2—B6	153.33 (18)	O6 ^{iv} —Li1—O3	98.4 (7)
O14—Gd2—B6	26.27 (17)	O7 ^x —Li1—O3	159.9 (7)
B6 ⁱⁱ —Gd2—B6	179.2 (3)	O11 ^x —Li1—B3 ^{iv}	127.1 (7)
O6 ^{iv} —Gd3—O7	150.44 (11)	O1—Li1—B3 ^{iv}	102.6 (6)
O6 ^{iv} —Gd3—O7 ⁱⁱⁱ	150.44 (11)	O6 ^{iv} —Li1—B3 ^{iv}	36.1 (4)
O7—Gd3—O7 ⁱⁱⁱ	59.1 (2)	O7 ^x —Li1—B3 ^{iv}	35.8 (4)
O6 ^{iv} —Gd3—O14	103.85 (15)	O3—Li1—B3 ^{iv}	132.3 (7)
O7—Gd3—O14	85.64 (17)	O11 ^x —Li1—B1	108.6 (6)
O7 ⁱⁱⁱ —Gd3—O14	70.10 (17)	O1—Li1—B1	35.4 (4)
O6 ^{iv} —Gd3—O14 ⁱⁱⁱ	103.85 (15)	O6 ^{iv} —Li1—B1	105.3 (6)
O7—Gd3—O14 ⁱⁱⁱ	70.10 (17)	O7 ^x —Li1—B1	128.1 (6)
O7 ⁱⁱⁱ —Gd3—O14 ⁱⁱⁱ	85.64 (17)	O3—Li1—B1	36.0 (3)
O14—Gd3—O14 ⁱⁱⁱ	152.3 (3)	B3 ^{iv} —Li1—B1	123.3 (6)
O6 ^{iv} —Gd3—O15 ⁱⁱⁱ	81.35 (13)	$O11^{x}$ —Li1—B5 ^x	29.5 (4)
O7—Gd3—O15 ⁱⁱⁱ	114.08 (16)	O1—Li1—B5 ^x	106.0 (6)
O7 ⁱⁱⁱ —Gd3—O15 ⁱⁱⁱ	81.59 (17)	O6 ^{iv} —Li1—B5 ^x	135.8 (7)
O14—Gd3—O15 ⁱⁱⁱ	130.14 (16)	O7 ^x —Li1—B5 ^x	76.6 (5)
O14 ⁱⁱⁱ —Gd3—O15 ⁱⁱⁱ	55.07 (16)	O3—Li1—B5 ^x	120.1 (6)
O6 ^{iv} —Gd3—O15	81.34 (13)	B3 ^{iv} —Li1—B5 ^x	107.2 (6)
O7—Gd3—O15	81.59 (17)	B1—Li1—B5 ^x	118.4 (6)
O7 ⁱⁱⁱ —Gd3—O15	114.08 (17)	O11 ^x —Li1—Gd1 ^{iv}	99.0 (6)
O14—Gd3—O15	55.07 (16)	O1—Li1—Gd1 ^{iv}	48.7 (4)
O14 ⁱⁱⁱ —Gd3—O15	130.14 (16)	O6 ^{iv} —Li1—Gd1 ^{iv}	108.1 (5)
O15 ⁱⁱⁱ —Gd3—O15	162.7 (3)	O7 ^x —Li1—Gd1 ^{iv}	51.8 (3)
O6 ^{iv} —Gd3—O3 ⁱⁱⁱ	78.17 (11)	O3—Li1—Gd1 ^{iv}	118.9 (5)
O7—Gd3—O3 ⁱⁱⁱ	73.11 (16)	B3 ^{iv} —Li1—Gd1 ^{iv}	79.0 (4)
O7 ⁱⁱⁱ —Gd3—O3 ⁱⁱⁱ	130.34 (16)	B1—Li1—Gd1 ^{iv}	83.4 (4)
O14—Gd3—O3 ⁱⁱⁱ	121.44 (16)	B5 ^x —Li1—Gd1 ^{iv}	73.3 (4)
O14 ⁱⁱⁱ —Gd3—O3 ⁱⁱⁱ	64.95 (16)	O11 ^x —Li1—Gd5 ⁱⁱⁱ	48.1 (4)
O15 ⁱⁱⁱ —Gd3—O3 ⁱⁱⁱ	108.25 (16)	O1—Li1—Gd5 ⁱⁱⁱ	109.0 (5)
O15—Gd3—O3 ⁱⁱⁱ	67.98 (16)	O6 ^{iv} —Li1—Gd5 ⁱⁱⁱ	118.6 (6)
O6 ^{iv} —Gd3—O3	78.17 (11)	O7 ^x —Li1—Gd5 ⁱⁱⁱ	149.1 (6)
O7—Gd3—O3	130.34 (16)	O3—Li1—Gd5 ⁱⁱⁱ	51.0 (3)

O7 ⁱⁱⁱ —Gd3—O3	73.11 (16)	B3 ^{iv} —Li1—Gd5 ⁱⁱⁱ	145.5 (5)
O14—Gd3—O3	64.95 (16)	B1—Li1—Gd5 ⁱⁱⁱ	79.4 (4)
O14 ⁱⁱⁱ —Gd3—O3	121.44 (16)	B5 ^x —Li1—Gd5 ⁱⁱⁱ	77.3 (4)
O15 ⁱⁱⁱ —Gd3—O3	67.98 (16)	Gd1 ^{iv} —Li1—Gd5 ⁱⁱⁱ	133.0 (4)
O15—Gd3—O3	108.25 (16)	O11 ^x —Li1—Gd3	121.3 (6)
O3 ⁱⁱⁱ —Gd3—O3	156.3 (2)	O1—Li1—Gd3	101.7 (6)
O6 ^{iv} —Gd3—B3	180.000 (3)	O6 ^{iv} —Li1—Gd3	46.0 (4)
O7—Gd3—B3	29.56 (11)	O7 ^x —Li1—Gd3	117.9 (5)
O7 ⁱⁱⁱ —Gd3—B3	29.56 (11)	O3—Li1—Gd3	54.7 (4)
O14—Gd3—B3	76.15 (15)	B3 ^{iv} —Li1—Gd3	82.1 (5)
O14 ⁱⁱⁱ —Gd3—B3	76.15 (15)	B1—Li1—Gd3	77.0 (5)
O15 ⁱⁱⁱ —Gd3—B3	98.65 (13)	B5 ^x —Li1—Gd3	147.7 (5)
O15—Gd3—B3	98.66 (13)	Gd1 ^{iv} —Li1—Gd3	138.9 (4)
O3 ⁱⁱⁱ —Gd3—B3	101.83 (11)	Gd5 ⁱⁱⁱ —Li1—Gd3	78.3 (3)
O3—Gd3—B3	101.83 (11)	O11 ^x —Li1—Cs1 ^x	64.3 (4)
O6 ^{iv} —Gd3—B6	89.68 (16)	O1—Li1—Cs1 ^x	165.0 (7)
O7—Gd3—B6	86.45 (19)	O6 ^{iv} —Li1—Cs1 ^x	75.4 (3)
O7 ⁱⁱⁱ —Gd3—B6	94.11 (19)	O7 ^x —Li1—Cs1 ^x	72.2 (4)
O14—Gd3—B6	27.51 (18)	O3—Li1—Cs1 ^x	123.4 (5)
O14 ⁱⁱⁱ —Gd3—B6	152.8 (2)	B3 ^{iv} —Li1—Cs1 ^x	69.6 (3)
O15 ⁱⁱⁱ —Gd3—B6	151.79 (18)	B1—Li1—Cs1 ^x	159.3 (6)
O15—Gd3—B6	28.00 (18)	B5 ^x —Li1—Cs1 ^x	65.9 (3)
O3 ⁱⁱⁱ —Gd3—B6	95.82 (18)	Gd1 ^{iv} —Li1—Cs1 ^x	116.3 (4)
O3—Gd3—B6	84.05 (19)	Gd5 ⁱⁱⁱ —Li1—Cs1 ^x	82.2 (3)
B3—Gd3—B6	90.32 (17)	Gd3—Li1—Cs1 ^x	90.1 (3)
O6 ^{iv} —Gd3—B6 ⁱⁱⁱ	89.68 (17)	O8 ^{xi} —Li2—O1	116.4 (7)
O7—Gd3—B6 ⁱⁱⁱ	94.11 (19)	O8 ^{xi} —Li2—O4 ^{iv}	130.8 (6)
O7 ⁱⁱⁱ —Gd3—B6 ⁱⁱⁱ	86.45 (19)	O1—Li2—O4 ^{iv}	112.7 (6)
O14—Gd3—B6 ⁱⁱⁱ	152.8 (2)	O8 ^{xi} —Li2—O5 ^{iv}	105.4 (6)
O14 ⁱⁱⁱ —Gd3—B6 ⁱⁱⁱ	27.51 (18)	O1—Li2—O5 ^{iv}	95.0 (6)
O15 ⁱⁱⁱ —Gd3—B6 ⁱⁱⁱ	28.00 (18)	O4 ^{iv} —Li2—O5 ^{iv}	73.1 (5)
O15—Gd3—B6 ⁱⁱⁱ	151.79 (19)	O8 ^{xi} —Li2—O2	94.9 (6)
O3 ⁱⁱⁱ —Gd3—B6 ⁱⁱⁱ	84.05 (19)	O1—Li2—O2	72.1 (5)
O3—Gd3—B6 ⁱⁱⁱ	95.82 (18)	O4 ^{iv} —Li2—O2	96.6 (6)
B3—Gd3—B6 ⁱⁱⁱ	90.32 (16)	O5 ^{iv} —Li2—O2	159.4 (7)
B6—Gd3—B6 ⁱⁱⁱ	179.4 (3)	O8 ^{xi} —Li2—B2 ^{iv}	123.2 (6)
O9 ^v —Gd4—O13 ^v	92.37 (18)	O1—Li2—B2 ^{iv}	109.0 (6)
$O9^{v}$ —Gd4— $O8^{iv}$	89.57 (18)	O4 ^{iv} —Li2—B2 ^{iv}	36.4 (4)
$O13^{v}$ —Gd4— $O8^{iv}$	88.01 (18)	O5 ^{iv} —Li2—B2 ^{iv}	36.7 (4)
O9 ^v —Gd4—O16	99.64 (19)	O2—Li2—B2 ^{iv}	131.5 (6)
O13 ^v —Gd4—O16	166.45 (18)	O8 ^{xi} —Li2—B1	107.5 (6)

O8 ^{iv} —Gd4—O16	85.83 (19)	O1—Li2—B1	35.9 (4)
O9 ^v —Gd4—O9	73.0 (2)	O4 ^{iv} —Li2—B1	109.8 (6)
O13 ^v —Gd4—O9	103.30 (18)	O5 ^{iv} —Li2—B1	129.7 (6)
O8 ^{iv} —Gd4—O9	159.41 (17)	O2—Li2—B1	36.3 (3)
O16—Gd4—O9	86.33 (19)	B2 ^{iv} —Li2—B1	129.2 (6)
O9 ^v —Gd4—O2 ⁱⁱ	166.9 (2)	O8 ^{xi} —Li2—B4 ^{xi}	30.2 (3)
$O13^{v}$ —Gd4— $O2^{ii}$	90.96 (17)	O1—Li2—B4 ^{xi}	106.8 (6)
O8 ^{iv} —Gd4—O2 ⁱⁱ	77.92 (17)	O4 ^{iv} —Li2—B4 ^{xi}	132.4 (6)
O16—Gd4—O2 ⁱⁱ	75.95 (18)	O5 ^{iv} —Li2—B4 ^{xi}	78.1 (5)
O9—Gd4—O2 ⁱⁱ	118.38 (17)	O2—Li2—B4 ^{xi}	120.6 (6)
O9 ^v —Gd4—O10	119.01 (18)	B2 ^{iv} —Li2—B4 ^{xi}	105.8 (6)
O13 ^v —Gd4—O10	72.09 (17)	B1—Li2—B4 ^{xi}	117.8 (6)
O8 ^{iv} —Gd4—O10	144.98 (16)	O8 ^{xi} —Li2—Gd1 ^{iv}	101.7 (5)
O16—Gd4—O10	106.88 (18)	O1—Li2—Gd1 ^{iv}	49.5 (3)
O9—Gd4—O10	55.60 (16)	O4 ^{iv} —Li2—Gd1 ^{iv}	112.6 (5)
O2 ⁱⁱ —Gd4—O10	74.02 (17)	O5 ^{iv} —Li2—Gd1 ^{iv}	51.9 (3)
O9 ^v —Gd4—B4	99.1 (2)	O2—Li2—Gd1 ^{iv}	120.7 (5)
O13 ^v —Gd4—B4	92.5 (2)	B2 ^{iv} —Li2—Gd1 ^{iv}	82.8 (4)
O8 ^{iv} —Gd4—B4	171.27 (19)	B1—Li2—Gd1 ^{iv}	84.7 (4)
O16—Gd4—B4	91.8 (2)	B4 ^{xi} —Li2—Gd1 ^{iv}	74.8 (4)
O9—Gd4—B4	27.96 (18)	O8 ^{xi} —Li2—Gd4 ⁱⁱ	46.7 (3)
O2 ⁱⁱ —Gd4—B4	93.36 (19)	O1—Li2—Gd4 ⁱⁱ	107.9 (6)
O10—Gd4—B4	28.77 (18)	O4 ^{iv} —Li2—Gd4 ⁱⁱ	113.9 (5)
O9 ^v —Gd4—Li2 ⁱⁱ	123.9 (3)	O5 ^{iv} —Li2—Gd4 ⁱⁱ	149.6 (5)
O13 ^v —Gd4—Li2 ⁱⁱ	98.6 (2)	O2—Li2—Gd4 ⁱⁱ	50.8 (3)
O8 ^{iv} —Gd4—Li2 ⁱⁱ	36.7 (3)	B2 ^{iv} —Li2—Gd4 ⁱⁱ	140.5 (5)
O16—Gd4—Li2 ⁱⁱ	69.5 (3)	B1—Li2—Gd4 ⁱⁱ	77.5 (4)
O9—Gd4—Li2 ⁱⁱ	151.8 (3)	B4 ^{xi} —Li2—Gd4 ⁱⁱ	76.4 (4)
O2 ⁱⁱ —Gd4—Li2 ⁱⁱ	43.1 (3)	Gd1 ^{iv} —Li2—Gd4 ⁱⁱ	133.5 (4)
O10—Gd4—Li2 ⁱⁱ	116.8 (3)	O8 ^{xi} —Li2—Gd2	115.0 (5)
B4—Gd4—Li2 ⁱⁱ	134.8 (3)	O1—Li2—Gd2	104.2 (5)
$O9^{v}$ —Gd4—Gd4 ^v	38.01 (14)	O4 ^{iv} —Li2—Gd2	46.6 (4)
$O13^{v}$ —Gd4—Gd4 ^v	99.95 (13)	O5 ^{iv} —Li2—Gd2	119.6 (5)
$O8^{iv}$ —Gd4—Gd4 ^v	126.73 (12)	O2—Li2—Gd2	51.8 (3)
$O16$ — $Gd4$ — $Gd4^v$	93.40 (13)	B2 ^{iv} —Li2—Gd2	83.1 (4)
$O9$ — $Gd4$ — $Gd4^{v}$	35.04 (12)	B1—Li2—Gd2	78.0 (4)
$O2^{ii}$ —Gd4—Gd4 ^v	152.96 (13)	B4 ^{xi} —Li2—Gd2	142.5 (5)
O10—Gd4—Gd4 v	85.84 (11)	Gd1 ^{iv} —Li2—Gd2	142.6 (4)
B4— $Gd4$ — $Gd4$ ^v	61.74 (15)	Gd4 ⁱⁱ —Li2—Gd2	74.5 (3)
Li2 ⁱⁱ —Gd4—Gd4 ^v	154.4 (2)	O8 ^{xi} —Li2—Cs1 ^{xi}	59.8 (3)
$O9^{v}$ —Gd4—Gd5 ^v	101.76 (14)	O1—Li2—Cs1 ^{xi}	167.2 (6)

$O13^v$ —Gd4—Gd5 ^v	36.24 (13)	O4 ^{iv} —Li2—Cs1 ^{xi}	73.0 (3)
$O8^{iv}$ —Gd4—Gd5 ^v	122.64 (13)	O5 ^{iv} —Li2—Cs1 ^{xi}	75.3 (4)
O16—Gd4—Gd5 ^v	144.10 (14)	O2—Li2—Cs1 ^{xi}	119.5 (5)
O9—Gd4—Gd5 ^v	72.93 (12)	B2 ^{iv} —Li2—Cs1 ^{xi}	68.2 (3)
O2 ⁱⁱ —Gd4—Gd5 ^v	88.34 (12)	B1—Li2—Cs1 ^{xi}	154.9 (6)
O10—Gd4—Gd5 ^v	37.24 (11)	B4 ^{xi} —Li2—Cs1 ^{xi}	63.4 (3)
B4—Gd4—Gd5 ^v	56.64 (16)	Gd1 ^{iv} —Li2—Cs1 ^{xi}	118.0 (4)
Li2 ⁱⁱ —Gd4—Gd5 ^v	119.0 (2)	Gd4 ⁱⁱ —Li2—Cs1 ^{xi}	78.7 (3)
$Gd4^v$ — $Gd4$ — $Gd5^v$	86.18 (2)	Gd2—Li2—Cs1 ^{xi}	88.0 (3)
O9 ^v Gd4Gd2	136.44 (13)	B1—O1—Li2	88.1 (6)
O13 ^v —Gd4—Gd2	130.73 (13)	B1—O1—Li1	88.2 (6)
O8 ^{iv} —Gd4—Gd2	86.43 (12)	Li2—O1—Li1	173.9 (7)
O16—Gd4—Gd2	36.82 (13)	B1—O1—Gd1 ^{iv}	166.2 (5)
O9—Gd4—Gd2	98.50 (13)	Li2—O1—Gd1 ^{iv}	91.0 (5)
O2 ⁱⁱ —Gd4—Gd2	40.10 (12)	Li1—O1—Gd1 ^{iv}	91.5 (5)
O10—Gd4—Gd2	85.46 (11)	B1—O2—Li2	78.0 (5)
B4—Gd4—Gd2	86.62 (15)	B1—O2—Gd4 ⁱⁱ	127.6 (4)
Li2 ⁱⁱ —Gd4—Gd2	53.4 (2)	Li2—O2—Gd4 ⁱⁱ	86.1 (4)
Gd4 ^v —Gd4—Gd2	122.01 (2)	B1—O2—Gd1	90.8 (5)
Gd5 ^v —Gd4—Gd2	116.732 (17)	Li2—O2—Gd1	167.6 (4)
O11 ^{iv} —Gd5—O15	84.81 (19)	Gd4 ⁱⁱ —O2—Gd1	105.3 (2)
$O11^{iv}$ —Gd5— $O10^{v}$	90.68 (19)	B1—O2—Gd2	126.5 (4)
O15—Gd5—O10 ^v	110.01 (17)	Li2—O2—Gd2	86.0 (4)
O11 ^{iv} —Gd5—O12 ^{vi}	89.85 (18)	Gd4 ⁱⁱ —O2—Gd2	101.29 (17)
O15—Gd5—O12 ^{vi}	173.27 (18)	Gd1—O2—Gd2	96.45 (18)
O10 ^v —Gd5—O12 ^{vi}	74.05 (18)	B1—O3—Li1	79.8 (6)
O11 ^{iv} —Gd5—O13	157.13 (17)	B1—O3—Gd5 ⁱⁱⁱ	132.9 (4)
O15—Gd5—O13	84.69 (18)	Li1—O3—Gd5 ⁱⁱⁱ	85.3 (4)
O10 ^v —Gd5—O13	74.01 (19)	B1—O3—Gd1	92.3 (5)
O12 ^{vi} —Gd5—O13	101.74 (17)	Li1—O3—Gd1	167.3 (4)
O11 ^{iv} —Gd5—O3 ⁱⁱⁱ	79.26 (19)	Gd5 ⁱⁱⁱ —O3—Gd1	107.36 (19)
O15—Gd5—O3 ⁱⁱⁱ	75.92 (18)	B1—O3—Gd3	118.3 (4)
O10 ^v —Gd5—O3 ⁱⁱⁱ	167.96 (19)	Li1—O3—Gd3	83.9 (4)
O12 ^{vi} —Gd5—O3 ⁱⁱⁱ	99.10 (17)	Gd5 ⁱⁱⁱ —O3—Gd3	103.96 (17)
O13—Gd5—O3 ⁱⁱⁱ	117.54 (17)	Gd1—O3—Gd3	91.14 (16)
O11 ^{iv} —Gd5—O12	145.68 (17)	B2—O4—Li2 ^{viii}	84.3 (5)
015—Gd5—012	107.87 (18)	B2—O4—Li2 ⁱ	84.3 (5)
O10 ^v —Gd5—O12	113.12 (17)	Li2 ^{viii} —O4—Li2 ⁱ	168.6 (9)
O12 ^{vi} —Gd5—O12	74.52 (19)	$B2-O4-Gd2^{i}$	180.000 (2)
013—Gd5—O12	57.18 (16)	Li2 ^{viii} —O4—Gd2 ⁱ	95.7 (5)
O3 ⁱⁱⁱ —Gd5—O12	73.51 (17)	Li2 ⁱ —O4—Gd2 ⁱ	95.7 (5)

O11 ^{iv} —Gd5—B5	172.2 (2)	B2—O4—Cs1	75.18 (13)
O15—Gd5—B5	92.5 (2)	Li2 ^{viii} —O4—Cs1	74.8 (4)
O10 ^v —Gd5—B5	97.1 (2)	Li2 ⁱ —O4—Cs1	102.2 (4)
O12 ^{vi} —Gd5—B5	92.3 (2)	Gd2 ⁱ —O4—Cs1	104.82 (13)
O13—Gd5—B5	28.69 (19)	B2—O4—Cs1 ⁱⁱ	75.19 (13)
O3 ⁱⁱⁱ —Gd5—B5	93.0 (2)	Li2 ^{viii} —O4—Cs1 ⁱⁱ	102.2 (4)
O12—Gd5—B5	29.22 (19)	Li2 ⁱ —O4—Cs1 ⁱⁱ	74.8 (3)
O11 ^{iv} —Gd5—Li1 ⁱⁱⁱ	38.4 (3)	Gd2 ⁱ —O4—Cs1 ⁱⁱ	104.81 (13)
O15—Gd5—Li1 ⁱⁱⁱ	66.2 (3)	Cs1—O4—Cs1 ⁱⁱ	150.4 (3)
O10 ^v —Gd5—Li1 ⁱⁱⁱ	128.0 (3)	B2—O5—Li2 ⁱ	80.8 (6)
O12 ^{vi} —Gd5—Li1 ⁱⁱⁱ	107.1 (3)	B2—O5—Gd1	139.4 (3)
O13—Gd5—Li1 ⁱⁱⁱ	147.6 (3)	Li2 ⁱ —O5—Gd1	85.5 (4)
O3 ⁱⁱⁱ —Gd5—Li1 ⁱⁱⁱ	43.7 (3)	B2—O5—Gd2	92.0 (5)
O12—Gd5—Li1 ⁱⁱⁱ	117.1 (3)	Li2 ⁱ —O5—Gd2	171.2 (4)
B5—Gd5—Li1 ⁱⁱⁱ	134.0 (3)	Gd1—O5—Gd2	103.29 (19)
O11 ^{iv} —Gd5—Gd4 ^v	125.57 (13)	B2—O5—Cs1 ⁱⁱ	71.2 (2)
O15—Gd5—Gd4 ^v	90.44 (13)	Li2 ⁱ —O5—Cs1 ⁱⁱ	71.7 (4)
$O10^{v}$ —Gd5—Gd4 ^v	41.03 (13)	Gd1—O5—Cs1 ⁱⁱ	138.87 (17)
$O12^{vi}$ —Gd5—Gd4 ^v	95.99 (12)	Gd2—O5—Cs1 ⁱⁱ	101.16 (14)
O13—Gd5—Gd4 v	34.40 (12)	B3—O6—Li1 ^{ix}	84.6 (5)
$O3^{iii}$ —Gd5—Gd4 ^v	150.98 (12)	B3—O6—Li1 ⁱ	84.6 (5)
$O12$ — $Gd5$ — $Gd4^{v}$	86.96 (12)	Lil ^{ix} —O6—Lil ⁱ	169.1 (10)
$B5$ — $Gd5$ — $Gd4^{v}$	61.61 (16)	B3—O6—Gd3 ⁱ	180.000 (2)
Li1 ⁱⁱⁱ —Gd5—Gd4 ^v	150.0 (2)	Li1 ^{ix} —O6—Gd3 ⁱ	95.4 (5)
O11 ^{iv} —Gd5—Gd1 ^{vii}	96.38 (14)	Li1 ⁱ —O6—Gd3 ⁱ	95.4 (5)
O15—Gd5—Gd1 ^{vii}	146.63 (13)	B3—O6—Cs1	74.35 (13)
O10 ^v —Gd5—Gd1 ^{vii}	36.80 (12)	Li1 ^{ix} —O6—Cs1	71.0 (4)
O12 ^{vi} —Gd5—Gd1 ^{vii}	38.09 (12)	Lil ⁱ —O6—Cs1	105.9 (4)
O13—Gd5—Gd1 ^{vii}	81.61 (13)	Gd3 ⁱ —O6—Cs1	105.65 (13)
O3 ⁱⁱⁱ —Gd5—Gd1 ^{vii}	137.19 (12)	B3—O6—Cs1 ⁱⁱⁱ	74.35 (13)
O12—Gd5—Gd1 ^{vii}	89.83 (12)	Li1 ^{ix} —O6—Cs1 ⁱⁱⁱ	105.9 (4)
B5—Gd5—Gd1 ^{vii}	89.87 (15)	Li1 ⁱ —O6—Cs1 ⁱⁱⁱ	71.0 (4)
Li1 ⁱⁱⁱ —Gd5—Gd1 ^{vii}	130.7 (3)	Gd3 ⁱ —O6—Cs1 ⁱⁱⁱ	105.65 (13)
Gd4 ^v —Gd5—Gd1 ^{vii}	61.771 (15)	Cs1—O6—Cs1 ⁱⁱⁱ	148.7 (3)
O11 ^{iv} —Gd5—Gd5 ^{vi}	121.94 (13)	B3—O7—Li1 ^{ix}	83.6 (7)
O15—Gd5—Gd5 ^{vi}	143.78 (13)	B3—O7—Gd1 ⁱⁱⁱ	131.6 (3)
O10 ^v —Gd5—Gd5 ^{vi}	94.80 (12)	Li1 ^{ix} —O7—Gd1 ⁱⁱⁱ	86.1 (4)
$O12^{vi}$ —Gd5—Gd5 ^{vi}	38.26 (13)	B3—O7—Gd3	90.3 (5)
O13—Gd5—Gd5 ^{vi}	77.09 (12)	Li1 ^{ix} —O7—Gd3	173.9 (5)
O3 ⁱⁱⁱ —Gd5—Gd5 ^{vi}	85.11 (12)	Gd1 ⁱⁱⁱ —O7—Gd3	98.39 (18)
O12—Gd5—Gd5 ^{vi}	36.27 (11)	B3—O7—Cs1	78.3 (2)

B5—Gd5—Gd5 ^{vi}	57.56 (16)	Li1 ^{ix} —O7—Cs1	73.2 (4)
Li1 ⁱⁱⁱ —Gd5—Gd5 ^{vi}	118.3 (2)	Gd1 ⁱⁱⁱ —O7—Cs1	142.00 (18)
Gd4 ^v —Gd5—Gd5 ^{vi}	91.72 (2)	Gd3—O7—Cs1	105.05 (14)
Gd1 ^{vii} —Gd5—Gd5 ^{vi}	60.984 (16)	B4—O8—Li2 ^{viii}	105.4 (6)
O8—Cs1—O9	45.95 (14)	B4—O8—Gd4 ⁱ	154.9 (5)
O8—Cs1—O11	117.84 (15)	Li2 ^{viii} —O8—Gd4 ⁱ	96.6 (5)
O9—Cs1—O11	100.84 (14)	B4—O8—Cs1	88.9 (4)
O8—Cs1—O13	102.18 (13)	Li2 ^{viii} —O8—Cs1	88.2 (4)
O9—Cs1—O13	63.08 (13)	Gd4 ⁱ —O8—Cs1	103.90 (17)
O11—Cs1—O13	45.78 (14)	B4	147.7 (5)
O8—Cs1—O15 ⁱ	98.52 (14)	B4—O9—Gd4	96.9 (5)
O9—Cs1—O15 ⁱ	128.84 (14)	Gd4 ^v —O9—Gd4	107.0 (2)
O11—Cs1—O15 ⁱ	59.50 (14)	B4—O9—Cs1	87.3 (5)
O13—Cs1—O15 ⁱ	103.66 (13)	Gd4 ^v —O9—Cs1	100.41 (16)
O8—Cs1—O16 ⁱ	60.46 (14)	Gd4—O9—Cs1	116.95 (19)
O9—Cs1—O16 ⁱ	104.80 (14)	B4—O10—Gd5 ^v	119.8 (4)
O11—Cs1—O16 ⁱ	99.76 (15)	B4—O10—Gd1 ⁱⁱ	126.6 (5)
O13—Cs1—O16 ⁱ	131.98 (13)	Gd5 ^v —O10—Gd1 ⁱⁱ	107.16 (18)
O15 ⁱ —Cs1—O16 ⁱ	45.32 (14)	B4—O10—Gd4	90.2 (5)
O8—Cs1—O14	119.24 (13)	Gd5 ^v —O10—Gd4	101.73 (19)
O9—Cs1—O14	95.46 (14)	Gd1 ⁱⁱ —O10—Gd4	104.58 (19)
O11—Cs1—O14	113.65 (14)	B5—O11—Li1 ^{ix}	106.8 (7)
O13—Cs1—O14	91.31 (14)	B5—O11—Gd5 ⁱ	157.8 (5)
O15 ⁱ —Cs1—O14	135.44 (14)	Li1 ^{ix} —O11—Gd5 ⁱ	93.4 (5)
O16 ⁱ —Cs1—O14	136.69 (14)	B5—O11—Cs1	88.4 (4)
O8—Cs1—B6	108.20 (17)	Li1 ^{ix} —O11—Cs1	82.1 (4)
O9—Cs1—B6	73.76 (17)	Gd5 ⁱ —O11—Cs1	103.60 (18)
O11—Cs1—B6	106.59 (17)	B5—O12—Gd5 ^{vi}	123.5 (4)
O13—Cs1—B6	71.94 (16)	B5—O12—Gd1 ⁱⁱⁱ	122.7 (4)
O15 ⁱ —Cs1—B6	153.27 (16)	Gd5 ^{vi} —O12—Gd1 ⁱⁱⁱ	104.79 (18)
O16 ⁱ —Cs1—B6	153.43 (16)	B5—O12—Gd5	91.1 (5)
O14—Cs1—B6	24.31 (16)	Gd5 ^{vi} —O12—Gd5	105.47 (19)
O8—Cs1—B6 ⁱ	84.15 (16)	Gd1 ⁱⁱⁱ —O12—Gd5	104.85 (19)
O9—Cs1—B6 ⁱ	126.20 (17)	B5—O13—Gd4 ^v	145.3 (5)
O11—Cs1—B6 ⁱ	84.04 (17)	B5—O13—Gd5	96.2 (5)
O13—Cs1—B6 ⁱ	126.61 (16)	Gd4 ^v —O13—Gd5	109.4 (2)
O15 ⁱ —Cs1—B6 ⁱ	24.72 (15)	B5—O13—Cs1	87.7 (4)
016 ⁱ —Cs1—B6 ⁱ	24.23 (15)	Gd4 ^v —O13—Cs1	98.94 (15)
O14—Cs1—B6 ⁱ	131.79 (18)	Gd5	119.64 (19)
B6—Cs1—B6 ⁱ	156.1 (3)	B6—O14—Gd1	169.7 (4)
O8—Cs1—B4	24.0 (2)	B6—O14—Gd3	93.9 (4)

O9—Cs1—B4	24.33 (19)	Gd1—O14—Gd3	95.26 (17)
O11—Cs1—B4	117.98 (16)	B6—O14—Gd2	81.7 (4)
O13—Cs1—B4	86.60 (18)	Gd1	88.05 (15)
O15 ⁱ —Cs1—B4	120.3 (2)	Gd3—O14—Gd2	152.1 (3)
O16 ⁱ —Cs1—B4	84.4 (2)	B6—O14—Cs1	80.7 (4)
O14—Cs1—B4	102.0 (2)	Gd1	100.8 (2)
B6—Cs1—B4	86.1 (2)	Gd3—O14—Cs1	107.41 (18)
B6 ⁱ —Cs1—B4	108.1 (2)	Gd2—O14—Cs1	99.10 (15)
O8—Cs1—B5	118.94 (16)	B6—O15—Gd5	150.6 (5)
O9—Cs1—B5	86.34 (17)	B6—O15—Gd3	93.0 (4)
O11—Cs1—B5	23.8 (2)	Gd5—O15—Gd3	109.51 (18)
O13—Cs1—B5	24.39 (17)	B6—O15—Cs1 ^{iv}	85.3 (4)
O15 ⁱ —Cs1—B5	83.3 (2)	Gd5—O15—Cs1 ^{iv}	102.85 (18)
O16 ⁱ —Cs1—B5	122.1 (2)	Gd3—O15—Cs1 ^{iv}	111.43 (19)
O14—Cs1—B5	96.7 (2)	B6—O15—Cs1	58.9 (4)
B6—Cs1—B5	84.5 (2)	Gd5	100.28 (17)
B6 ⁱ —Cs1—B5	107.9 (2)	Gd3—O15—Cs1	92.58 (15)
B4—Cs1—B5	108.6 (2)	Cs1 ^{iv} —O15—Cs1	138.22 (15)
O8—Cs1—B3	168.12 (13)	B6—O16—Gd4	144.3 (5)
O9—Cs1—B3	143.5 (2)	B6—O16—Gd2	105.5 (4)
O11—Cs1—B3	71.00 (12)	Gd4—O16—Gd2	107.11 (19)
O13—Cs1—B3	89.69 (14)	B6—O16—Cs1 ^{iv}	82.2 (4)
O15 ⁱ —Cs1—B3	78.9 (2)	Gd4—O16—Cs1 ^{iv}	98.27 (18)
O16 ⁱ —Cs1—B3	111.7 (2)	Gd2—O16—Cs1 ^{iv}	112.5 (2)
O14—Cs1—B3	59.2 (2)	B6—O16—Cs1	61.7 (4)
B6—Cs1—B3	74.8 (3)	Gd4	99.34 (18)
B6 ⁱ —Cs1—B3	89.2 (2)	Gd2	98.23 (17)
B4—Cs1—B3	160.8 (3)	Cs1 ^{iv} —O16—Cs1	137.95 (15)

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*+1/2, *y*, -*z*+3/2; (iii) -*x*+3/2, *y*, -*z*+3/2; (iv) *x*, *y*+1, *z*; (v) -*x*+1, -*y*+1, -*z*+2; (vi) -*x*+2, -*y*+1, -*z*+2; (vii) *x*+1/2, -*y*+1, *z*+1/2; (viii) -*x*+1/2, *y*-1, -*z*+3/2; (ix) -*x*+3/2, *y*-1, -*z*+3/2; (x) -*x*+3/2, *y*+1, -*z*+3/2; (xi) -*x*+1/2, *y*+1, -*z*+3/2.

Fig. 3